Math Lab: Transformations of Parent Graphs

Use your graphing calculator to sketch each graph as accurately as possible. Trace over each curve in red and identify each type of function.

What do all of these parent graphs have in common?

Equation of Parent Function	Description of Transformation	Equation of Transformed Function	Graph of Transformed Function (in red)	Domain and Range of Transformed Function
$f(x)=x^{2}$		$f(x)+3=$		
$f(x)=\|x\|$		$f(x)-5=$		
$f(x)=x^{\text {a }}$		$f(x-4)=$		
$f(x)=\sqrt{x}$		$f(x+5)=$		
$f(x)=\sqrt{x}$		$f(x+3)-4=$		

Equation of Parent Function	Description of Transformation	Equation of Transformed Function	Graph of Transformed Function (in red)	Domain and Range of Transformed Function
$f(x)=\llbracket x \rrbracket$		$-f(x)=$		
$f(x)=x^{2}$		$-f(x)=$		
$f(x)=\sqrt{x}$		$-f(x)=$		
$f(x)=\sqrt{x}$		$f(-x)=$		
$f(x)=\sqrt{x}$		$-f(-x)=$		

Equation of Parent Function	Description of Transformation	Equation of Transformed Function	Graph of Transformed Function (in red)	Domain and Range of Transformed Function		
$f(x)=\\|x\\|$		$3 \cdot f(x)=$				
$f(x)=x^{2}$		$\frac{1}{2} \cdot f(x)=$				
$f(x)=\llbracket x \rrbracket$		$f(2 x)=$				
$f(x)=\llbracket x \rrbracket$		$f\left(\frac{1}{3} x\right)=$				
$f(x)=x^{4}$		$6 \cdot f(x)=$				

| Equation of Parent
 Function | Description of
 Transformation | Equation of Transformed
 Function | Graph of Transformed Function (in
 red) | Domain and Range of
 Transformed Function | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |

For each of the following, describe the transformation happening to the function.

Rigid Transformations	
Function Notation	Description of transformation
$f(x)=f(x)+c$	
$f(x)=f(x)-c$	
$f(x)=f(x+c)$	
$f(x)=f(x-c)$	
$f(x)=-f(x)$	
$f(x)=f(-x)$	

Non-rigid Transformations	
Function Notation	Description of transformation
$f(x)=c \cdot f(x)$	
$f(x)=\frac{1}{c} \cdot f(x)$	
$f(x)=f(c x)$	
$f(x)=f\left(\frac{1}{c} x\right)$	

Based on the tables, what is the difference between a rigid transformation and a non-rigid transformation?

Extend your thinking

Use the graph of f to sketch each graph. Label each ordered pair.
(Hint: Think about how the transformation affects the x and y-coordinate of each anchor point on the graph.)

